Chapter 17: Probability Models

Bermouli Trials:

- Two possible outcomes~ success/ failure
- Probability, p , is constant for each trial
- Each trial is independent
*To test a Bermouli trial you can use a Geometric model, a Binomial model or a Normal model

Geometric Model:

~ one parameter, p, (probability of success) represented by Geom(p)

$$
\begin{aligned}
& P=\text { success } q:(p-1)=\text { failure } x=\# \text { of trials } \\
& P(X=x)=q x-1 p \quad \text { expected value: } \mu=1 / p \\
& \text { Standard deviation: } \sigma=\sqrt{q / p^{2}}
\end{aligned}
$$

*consider the 10% condition: sample is smaller than 10% of the population

Ex: The American Red Cross says that about 11% of the U.S. population has Type B blood. A blood drive is being held in your area. What is the probability that the fourth blood donor is the first donor with Type B blood?

$$
p(4)=q^{4-1} \times p=(.89)^{4-1}(.11)=.89^{3} \times .11=.0775
$$

Binomial Model:

~ two parameters, Binom(n,p)

Probability of k success in n trials is: $\mathrm{b}(\mathrm{n}, \mathrm{k}, \mathrm{p})$

$$
(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}
$$

Mean: $\mu=n \mathrm{n}$ standard deviation: $\sigma=\sqrt{n p q}$
-a binomial model describes the number of successes in a specified number of trials two parameters= \# of trials, probability of success, p,
*still check 10% condition

* success/failure condition: at least 10 successes and 10 failures

Ex: only 6\% of people have o-negative blood. Suppose 20 donors come to the blood drive. What is the probability that there are 2 or 3 universal donors?

$$
\begin{gathered}
P(X=2 \text { or } 3)=P(X=2)+P(X=2) \\
\left(\frac{20}{2}\right)(.06)^{2}(.94)^{18}+\left(\frac{20}{3}\right)(.06)^{3}(.94)^{17} \sim .2246+.0860=.3106
\end{gathered}
$$

